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We study a class of networks generated by sequences of letters taken from a finite alphabet consisting of m
letters �corresponding to m types of nodes� and a fixed set of connectivity rules. Recently, it was shown how
a binary alphabet might generate threshold nets in a similar fashion �A. Hagberg et al., Phys. Rev. E 74,
056116 �2006��. Just like threshold nets, sequence nets in general possess a modular structure reminiscent of
everyday-life nets and are easy to handle analytically �i.e., calculate degree distribution, shortest paths, be-
tweenness centrality, etc.�. Exploiting symmetry, we make a full classification of two- and three-letter sequence
nets, discovering two classes of two-letter sequence nets. These sequence nets retain many of the desirable
analytical properties of threshold nets while yielding richer possibilities for the modeling of everyday-life
complex networks more faithfully.
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I. INTRODUCTION

Threshold nets are obtained by assigning a weight x, from
a distribution ��x�, to each of N nodes and connecting any
two nodes i and j whose combined weights exceed a certain
threshold �: xi+xj �� �1–4�. Threshold nets can be produced
of �almost� arbitrary degree distributions, including scale
free, by judiciously choosing the weight distribution ��x� and
the threshold �, and they encompass an astonishingly wide
variety of important architectures: from the star graph �a
simple “cartoon” model of scale-free graphs, consisting of a
single hub� with its low density of links, 2 /N, to the com-
plete graph. Studied extensively in the graph-theoretical lit-
erature �5–8�, they have recently come to the attention of
statistical and nonlinear physicists due to the beautiful work
of Hagberg, Swart, and Schult �9�.

Hagberg et al. exploit the fact that threshold graphs may
be more elegantly encoded by a two-letter sequence, corre-
sponding to two types of nodes A and B �10�. As new nodes
are introduced, according to a prescribed sequence, nodes of
type A connect to none of the existing nodes, while nodes of
type B connect to all of the nodes of either type: B→A and
B→B. In Fig. 1�a� we show an example of the threshold
graph obtained from the sequence �A ,A ,A ,B ,B ,A ,A ,B�.
Note the modular structure of threshold graphs: a subse-
quence of n consecutive B’s gives rise to a Kn-clique, while
nodes in a subsequence of A’s connect to B nodes thereafter,
but not among one another. We highlight this modularity
with a diagram of boxes �similar to �9��: oval boxes enclose
nodes of type A, which are not connected among themselves,
while rectangular boxes enclose K-cliques of B nodes �11�. A
link between two boxes means that all of the nodes in one
box are connected to all of the nodes in the other, Fig. 1�b�.

Given the sequence of a threshold net, there exist fast
algorithms to compute important structural benchmarks, be-

sides its modularity, such as degree distribution, triangles,
betweenness centrality, and the spectrum and eigenvectors of
the graph Laplacian �9�. The latter are a crucial determinant
of dynamics and synchronization and have applications to
graph partitioning and mesh processing �12–17�. Perhaps
more importantly, it becomes thus possible to design thresh-
old nets with a particular degree distribution, spectrum of
eigenvalues, etc. �9�.

Despite their malleability, threshold nets are limited in
some obvious ways; for example, their diameter is 1 or 2,
regardless of the number of nodes, N. Our idea consists of
studying the broader class of nets that can be constructed
from a sequence �formed from two or more letters� by deter-
ministic rules of connectivity on their own right. It is truly
this property that gives the nets all their desired attributes:
modularity �as in everyday-life complex nets�, easily com-
putable structural measures—including the possibility of
design—and a high degree of compressibility. Roughly
speaking, each additional letter to the alphabet allows for an
increase of one link in the nets’ diameter, so that the three-
letter nets possess diameter 3 or 4 �some of the new types of
two-letter nets have diameter 3�. This modest increase is very
significant, however, in view of the fact that the diameter of
many everyday-life complex nets is not much larger than that
�18�. Sequence nets gain us much latitude in the types of nets
that can be described in this elegant fashion, while retaining
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FIG. 1. �Color online� Threshold network: �a� the threshold
graph resulting from the sequence �A ,A ,A ,B ,B ,A ,A ,B� and �b� its
box representation, highlighting modularity. Nodes are added one at
a time from bottom to top, A’s on the left and B’s on the right.
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much of the analytical appeal of threshold nets. Another un-
usual property of sequence nets is that any ensemble of se-
quence nets admits a natural ordering; simply list them al-
phabetically according to their sequences. One may use this
ordering for exploring eigenvalues and other structural prop-
erties of sequence nets.

In this paper, we take a first stab at the general class of
sequence nets. In Sec. II we explore systematically all of the
possible rules for creating connected sequence nets from a
two-letter alphabet. Applying symmetry arguments, we find
that threshold nets are only one of three equivalence classes,
characterized by the highest level of symmetry. We then dis-
cuss the remaining two classes, showing that also then there
is a high degree of modularity and that various structural
properties can be computed easily. Curiously, the new classes
of two-letter sequence nets can be related to a generalized
form of threshold nets, where the difference �xi−xj�, rather
than the sum of the weights, is the one compared to the
threshold � �19�.

In Sec. III we derive all possible forms of connected
three-sequence nets. Symmetry arguments lead us to the dis-
covery of 30 distinct equivalence classes. Among these
classes, we identify a natural extension of threshold nets to
three-letter sequence nets. Despite the enlarged alphabet,
three-letter sequence nets do retain many of the desirable
properties of threshold and two-letter sequence nets. We also
show that at least some of the three-letter sequence nets can
be mapped into threshold nets with two thresholds, instead of
one. We conclude with a summary and discussion of open
problems in Sec. IV.

II. TWO-LETTER SEQUENCE NETS

A. Classification

Consider graphs that can be constructed from sequences
�S1 ,S2 , . . . ,SN� of the two letters A and B. We can represent
any possible rule by a 2�2 matrix R whose elements indi-
cate whether nodes of type i connect to nodes of type j:
Rij =1 if the nodes connect and 0 otherwise �i=1,2 stands for
A, B, respectively�. Figure 1 gives an example of the graph
obtained from the sequence �A ,A ,A ,B ,B ,A ,A ,B�, applying
the threshold rule � 0 0

1 1 �. Since each element can be 0 or 1
independently of the others, there are 24=16 possible rules.
We shall disregard, however, the four rules that fail to con-
nect between A and B,

R0 = �0 0

0 0
�, R1 = �1 0

0 0
� ,

R2 = �0 0

0 1
�, R3 = �1 0

0 1
� , �1�

for they yield simple disjoint graphs of the two types of
nodes: R0 yields isolated nodes only, R3 yields one complete
graph of type A and one of type B, R1 yields a complete
graph of type A and isolated nodes of type B, etc.

The list of remaining rules can be shortened further by
considering two kinds of symmetries: �a� permutation and
�b� time reversal. Permutation is the symmetry obtained by

permuting between the two types of nodes, A↔B. Thus, a
permuted rule �R11↔R22 and R12↔R21� acting on a per-

muted sequence �S̄1 , S̄2 , . . . , S̄N� yields back the original
graph �20�. Time reversal is the symmetry obtained by re-
versing the arrows �“time”� in the connectivity rules, or tak-
ing the transpose of R. The transposed rule acting on the
reversed sequence �SN ,SN−1 , . . . ,S1� yields back the original
graph. The two symmetry operations are their own inverse,
and they form a symmetry group. In particular, one may
combine the two symmetries: a rule with R11↔R22 applied

on a reversed sequence with inverted types �S̄N , S̄N−1 , . . . , S̄1�
yields back the original graph; see Fig. 2.

All of the four rules

R4 = �0 0

1 1
�, R5 = �1 1

0 0
� ,

R6 = �1 0

1 0
�, R7 = �0 1

0 1
� �2�

are equivalent and generate threshold graphs. R4 is the rule
for threshold graphs exploited by Hagberg et al. �9�, and R5
is equivalent to it by permutation. R6 is obtained from R4 by
time reversal and permutation �Fig. 2� and R7 is obtained
from R4 by time reversal.

The two rules

R8 = �0 0

1 0
�, R9 = �0 1

0 0
� �3�

are equivalent, by either permutation or time reversal, and
generate nontrivial bipartite graphs that are different from
threshold nets �Fig. 3�.

The rule R10= � 0 1
1 0 � generates complete bipartite graphs.

However, the complete bipartite graph Kp,q can also be
produced by applying R8 to the sequence
�A ,A , . . . ,A ,B ,B , . . . ,B� of p A’s followed by q B’s, so the
rule R10 is a “degenerate” form of R8. One could see that this
is the case at the outset, because of the symmetrical relations
A→B, B→A: these render the ordering of the A’s and B’s in
the graph’s sequence irrelevant. By the same principle, R11

= � 0 1
1 1 � and R12= � 1 1

1 0 � are degenerate forms of R4 and R5,
respectively. They yield threshold graphs with segregated se-
quences of A’s and B’s.

The two rules

FIG. 2. �Color online� Combined time reversal and permutation
symmetry: The graphs resulting from R4 applied to �a� the sequence
�A ,A ,A ,B ,B ,A ,A ,B� and from R6 applied to �b� the reverse-
inverted sequence �A ,B ,B ,A ,A ,B ,B ,B� are identical.
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R13 = �1 1

0 1
�, R14 = �1 0

1 1
� , �4�

are equivalent, by either permutation or time reversal, and
generate nontrivial graphs different from threshold graphs
and graphs produced by R8 �Fig. 3�. Finally, the rule R15

= � 1 1
1 1 � is a degenerate form of R13 �or R14� and yields only

complete graphs �which are threshold graphs, so R15 is sub-
sumed also in R4�.

To summarize, R4, R8, and R13 are the only two-letter
rules that generate different classes of nontrivial connected
graphs. There is yet another amusing type of symmetry: ap-
plying R8 and R13 to the same sequence yields complement,
or inverse graphs—nodes are adjacent in the inverse graph if
and only if they are not connected in the original graph. The
figure-background symmetry manifest in the rules R8 and
R13 �0↔1� is also manifest in the graphs they produce �Figs.
3�a� and 3�c��. On the other hand, the inverses of threshold
graphs are also threshold graphs. Also, the complement of a
threshold rule applied to the complement �inverted� sequence
yields back the original graph. In this sense, threshold graphs
have maximal symmetry. R8 graphs are typically less dense
and R13 graphs are typically denser than threshold graphs.

The connectivity rules have an additional useful interpre-
tation as directed graphs, where the nodes represent the let-
ters of the sequence alphabet; a directed link, e.g., from A to
B indicates the rule A→B, and a connection of a type to
itself is denoted by a self-loop �Fig. 4�. Because the rules are
the same under permutation of types, there is no need to
actually label the nodes: all graph isomorphs represent the

same rule. Likewise, time-reversal symmetry means that
graphs with inverted arrows are equivalent as well. Note that
the direction of self-loops is irrelevant in this respect, so we
simply take them as undirected. We shall make use of this
notation, extensively, for the analysis of three-letter sequence
nets in Sec. III.

B. Alphabetical ordering

A very special property of sequence nets is the fact that
any arbitrary ensemble of such nets possesses a natural or-
dering, simply listing the nets alphabetically according to
their sequences. In contrast, think for example of the en-
semble of Erdős-Rényi random graphs of N nodes, where
links are present with probability p: there is no natural way
to order the 2N graphs in the ensemble �21�.

Plotting a structural property against the alphabetical or-
dering of the ensemble reveals some inner structure of the
ensemble itself, yielding insights into the nature of the nets.
As an example, in Fig. 5 we show �2, the second smallest
eigenvalue, for the ensemble of connected threshold nets
containing N=8 nodes �there are 27=128 graphs in the en-
semble, since their sequences must all start with the letter A�.
Notice the beautiful pattern followed by the eigenvalues
plotted in this way, which resembles a fractal, or a Cayley
tree: the values within the first half of the graphs in the x axis
repeat in the second half, and the pattern iterates as we zoom
in further into the picture.

C. Classes of two-letter sequence nets

Structural properties of the new classes of two-letter se-
quence nets, R8 and R13, are as easily derived as for thresh-
old nets. Here we focus on R8 alone, which forms a subset of
bipartite graphs. The analysis for R13 is very similar and
often can be trivially obtained from the complementary sym-
metry of the two classes.

All connected sequence nets in the R8 class must begin
with the letter A and end with the letter B. A sequence of this
sort may be represented more compactly �9� by the numbers
of A’s and B’s in the alternating layers �NA1

,NB2
, . . . ,NBn

�.
We assume that there are N nodes and n layers �n is even�.
We also use the notation NA=�NAi

and NB=�NBi
for the

total number of A’s and B’s, as well as

FIG. 3. �Color online� Distinct types of connected nontrivial
two-letter sequential graphs: All three graphs are generated from the
same sequence �A ,A ,A ,B ,B ,A ,A ,B�, applying rules �a� R8, �b� R4,
and �c� R13. Note the figure-background symmetry of �a� and �c�:
the graphs are the inverse, or complements, of one another �see
text�. The inverse of the threshold graph �b� is also a �two-
component� threshold graph, obtained from the same sequence and
applying the rule R5 �R4’s complement�.

FIG. 4. Diagrammatic representation of rules for two-letter se-
quence nets: �a� All of the 22 possible connections between nodes of
type A and B. �b� Three equivalent representations of the threshold
rule R4. The second and third diagram are obtained by label per-
mutation and time reversal, respectively. �c� Diagrams for R8 and
R13. Note how they complement one another to the full set of con-
nections in part �a�.
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FIG. 5. �Color online� Second smallest eigenvalues of threshold
nets with N=8 nodes, plotted against their alphabetical ordering.
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NAj

− = �
i�j

NAi
, NAj

+ = �
i�j

NAi
, �5�

and likewise for NBj

	 . Finally, since all the nodes in a layer
have identical properties we denote any A in the ith layer by
Ai and any B in the jth layer by Bj. With this notation in
mind we proceed to discuss several structural properties.

Degree distribution. Since A’s connect only to subsequent
B’s �and B’s only to preceding A’s�, the degree k of the nodes
is given by

k�Aj� = NBj

+ , k�Bj� = NAj

− . �6�

Clustering. There are no triangles in R8 nets, so the clus-
tering of all nodes is zero.

Distance. Every A is connected to the last B, so the dis-
tance between any two A’s is 2. Every B is connected to the
first A in the sequence, so the distance between any two B’s
is also 2. The distance between Bi and Aj is 1 if j� i �they
connect directly� and 3 if j� i �Bi links to A1, which links to
Bn, which links to Aj�.

Betweenness centrality. Because of the time-reversal sym-
metry between A and B, it suffices to analyze B nodes only.
The result for A can then be obtained by simply reversing the
creation sequence and permuting the letters.

The vertex betweenness b�v� of a node v is defined as

b�v� =
1

2 �
s�t�v


st�v�

st

, �7�

where 
st is the number of shortest paths from node s to t
�s� t�, excluding the cases that s=v or t=v. 
st�v� is the
number of shortest paths from s to t that go through v. The
factor 1

2 appears for undirected graphs since each pair is
counted twice in the summation.

The betweenness of B’s can be calculated from lower lay-
ers to higher layers recursively. In the first B layer,

b�B2� =

1

2
NA1

�NA1
− 1�

NB
�8�

and

b�Bj� = b�Bj−2� + NAj−1

1

2
�NAj−1

− 1� + NAj−1

−

NBj

+ + NAj−1

NBj

−

NBj

+ ,

�9�

for j�2. The second term on the right-hand side accounts
for the shortest paths from layer Aj−1 to itself and all previ-
ous layers of A, and the third term corresponds to paths from
Aj−1 to Bj to Ai �i� j−1� to Bj−2. Although this recursion can
be solved explicitly, it is best left in this form, as it thus
highlights the fact that the betweenness centrality increases
from one layer to the next. In other words, the networks are
modular, where each additional B layer dominates all the
layers below.

Laplacian spectrum. Unlike threshold nets, for R8 nets the
eigenvalues are not integer, and there seems to be no easy

way to compute them. Instead, we focus on the second
smallest and largest eigenvalues �2 and �N alone for their
important dynamical role: the smaller the ratio r	�N /�2, the
more susceptible the network is to synchronization �12�.

Consider first �2. For R8 it is easy to show that both the
vertex and edge connectivity are equal to min�NA1

,NBn
�.

Then, following an inequality in �22�,

2
1 − cos��

N
��min�NA1

,NBn
� � �2 � min�NA1

,NBn
� .

�10�

The upper bound seems stricter and is a reasonable approxi-
mation to �2 �see Fig. 6�.

For �N, using Theorem 2.2 of �22� one can derive the
bounds

N

N − 1
max�NA,NB� � �N � N , �11�

but they do not seems very useful, numerically. Playing with
various structural properties of the nets, plotted against their
alphabetical ordering, we have stumbled upon the approxi-
mation

�N � N − �2
NANB

N
− k�� , �12�

where k� is the average degree of the graph; see Fig. 7. The
approximation is exact for bipartite complete graphs �n=1�
and the relative error increases slowly with N; it is roughly at
10% for N=60.

D. Relation to threshold nets

In �9� it was shown that threshold graphs have a mapping
to a sequence net, with a unique sequence �under the “thresh-
old rule” R4�; and conversely, for any R4 sequence net there
exists a set of weights, xi, of the nodes �not necessarily
unique�, such that connecting any two nodes that satisfy xi
+xj �� reproduces the sequence net. Here we establish a
similar relation between R8 �or R13� sequence nets and a
different kind of threshold net, where connectivity is decided
by the difference �xi−xj� rather than the sum of the weights.

We begin with the mapping of a weighted set of nodes to
an R8 sequence net. Let a set of N nodes have weights xi
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FIG. 6. �Color online� Plot of second smallest eigenvalues of all
connected R8 nets with N=8 against their alphabetical ordering
�solid curve� and their upper and lower bounds �dashed lines�.
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�i=1,2 , . . . ,N�, taken from some probability density, and we
assume 0�xi�2�, without loss of generality. Denote nodes
with xi�� as type A and nodes with xi�� as type B. Finally,
connect any two nodes i and j that satisfy �xi−xj���. The
resulting graph can be constructed by a unique sequence un-
der the rule R8, obtained as follows.

For convenience, rewrite the set of weights as

0 � u1 � u2 ¯ � uNA
� � � v1 � ¯ � vNB

� 2� ,

�13�

where the first NA weights correspond to A nodes and the rest
to B nodes. Denote the creation sequence by �S1 ,S2 , . . . ,SN�
and determine the Si by the algorithm �in pseudo-code�:

Set i=1, j=1
For k=1,2 , . . . ,N, do:

If �ui−v j���
set Sk=A and i= i+1;

Else
set Sk=B and j= j+1.

End.
It is understood that if the ui are exhausted before the end

of the loop, the remainding B nodes are automatically affixed
to the end of the sequence �and similarly for the v j�. For
example, using this algorithm we find that the “difference-
threshold� graph resulting from the set of weights
�1,2,3,5,7,16,17,20� and �=12 can be reproduced from the
sequence �A ,A ,A ,B ,B ,A ,A ,B�, with the rule R8.

Consider now the converse problem: given a graph cre-
ated from the sequence �S1 ,S2 , . . . ,SN� with the rule R8, we
derive a �nonunique� set of weights �xi� such that connecting
any two nodes with �xi−xj��� results in the same graph.
Rewrite first the creation sequence into its compact form
�NA1

,NB2
, . . . ,NBn

�, and assign weights l for nodes A in layer
l, weights n+m for nodes B in layer m, and set the threshold
at �=n. For example, the sequence �A ,A ,A ,B ,B ,A ,A ,B�
has a compact representation �3,2,2,1�, with n=4 layers, so
the three A’s in layer 1 have weights 1, the two B’s in layer
2 have weights 6, the two A’s in layer 3 have weights 3, and
the single B in layer 4 has weight 8. The weights
�1,1,1,6,6,3,3,8�, with connection threshold �=4, reproduce
the original graph.

Sequence graphs obtained from the rule R13 can be also
mapped to difference-threshold graphs in exactly the same
way, only that the criterion for connecting two nodes is then
�xi−xj���, instead of �xi−xj���, as for R8. The mapping of
sequence nets to generalized threshold graphs may be helpful
in the analysis of some of their properties—for example, for
finding the isoperimetric number of a sequence graph
�22,23�.

III. THREE-LETTER SEQUENCE NETS

A. Classification

With a three-letter alphabet �A ,B ,C�, there are at the out-
set 232

=512 possible rules. Again, these can be reduced con-
siderably, due to symmetry. Because the rule matrix has nine
entries �an odd number�, no rule can be identical to its
complement. Thus, we can limit ourselves to rules with no
more than four nonzero entries and apply symmetry argu-
ments to reduce their space—at the very end we can then add
the complements of the remaining rules.

In Fig. 8 we list all possible three-letter rules with two,
three, and four interactions. Rules that lead to disconnected
graphs and symmetric rules �by label permutation or time-
reversal� have been omitted from the figure.

Rule R2
�3� �24� is in fact not new: identifying nodes of type

A and C �as marked in rule 1 of the figure� we can easily see
that the rule is identical to the two-letter rule R8

�2�. In the
same fashion, rule R7

�3� is the same as the two-letter threshold
rule R4

�2�.
Rule R3

�3� is a degenerate form of R2
�3�: Because of the

double connection B→C and C→B, the order at which B
and C appear in the sequence relative to one another is in-
consequential. �On the other hand, the order of the B’s rela-
tive to A’s is important, since A’s connect only to those B’s
that appear earlier in the sequence.� Then, given a sequence,
one can rearrange it by moving all the C’s to the end of the
list. If we now apply R2

�3�, A→B and C→B, then we get the
same graph as from the original sequence under the rule R3

�3�.
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FIG. 7. �Color online� Plot of largest eigenvalue of all connected
R8 nets with N=8 against their alphabetical ordering �solid curve�
and its approximated value �dashed line�.

FIG. 8. Rules for three-letter sequence nets: Shown are rules
with �a� two, �b� three, and �c� four interactions. All label permuta-
tions and time reversals are omitted. In addition, rules 2 and 7
degenerate to two-letter rules �identifying A and C�, and rules 3, 12,
13, and 14 are degenerate cases of rules 2, 6, 7, and 6, respectively.
This leaves us with 15 distinct three-letter rules �underlined� and
their 15 complements, for a total of 30 different classes of three-
letter sequence nets.
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The same consideration applies to rules R12
�3�, R13

�3�, and R14
�3�,

which are degenerate forms of R6
�3�, R7

�3�, and R8
�3� �or R6

�3��,
respectively. We are thus left with only 15 distinct rules with
fewer than 5 connections. To these one should add their
complements, for a total of 30 distinct three-letter rules.

Note the resemblance of R9
�3�, R18

�3�, and R20
�3� to two-letter

threshold nets. R18
�3� seems like a particularly symmetrical

generalization, and we will focus on it in much of our dis-
cussion below.

B. Connectedness

While one can easily establish wether a graph is con-
nected or not, a posteriori, with a burning algorithm that
requires O�N� steps, it is useful to have shortcut rules that
tell us how to avoid bad sequences at the outset: knowing
that two-letter threshold graphs are connected if and only if
their sequence ends with B deals with the question most
effectively. Analogous criteria exist for three-letter sequence
graphs, but they are a bit more complicated. For example,
three-letter sequences interpreted with R18

�3� lead to connected
graphs if and only if they satisfy the following: �i� The first A
and the first C in the sequence appear before the last B. �ii�
The sequence does not start with B. �We assume that the
sequence contains all three letters.� For R1

�3� the requirements
are the following: �i� The first A in the sequence must appear
after the first B. �ii� The last C in the sequence must appear
before the last B. �iii� The last A in the sequence must appear
after the first C, and there ought to be at least one B between
the two. Similar criteria exist for all other three-letter rules
and can be found by inspection.

C. Structural properties

Structural properties of three-letter sequence nets are ana-
lyzed as easily as those of two-letter nets, Here we list, as an
example, a few basic attributes of R18

�3� sequence nets. We use
a notation similar to that of Sec. II C

Degree distribution. A and C nodes form complete sub-
graphs, while B nodes connect to all preceding A’s and C’s.
Thus the degree of the nodes are

k�Ai� = NA − 1 + NBi

+ ,

k�Bi� = NAi

− + NCi

− ,

k�Ci� = NC − 1 + NBi

+ . �14�

Distance. Since the A nodes make a subset complete
graph d�Ai ,Aj�=1, and likewise for C, d�Ci ,Cj�=1. The B’s
do not connect among themselves, but they all connect to the
nodes in the first layer �which does not consist of B’s�, so
d�Bi ,Bj�=2. For the distance of A nodes from B, we have

d�Ai,Bj� = �
1 i � j ,

2 i � j,a1 � j ,

3 i � j,a1 � j,i � bn,

4 i � j,a1 � j,i � bn,
� �15�

where a1 is the index of the first A layer and bn is the index
of the last B layer. The first line follows since B’s are directly

connected to preceding A’s and C’s. The second line and
third and fourth lines are illustrated in Figs. 9�a� and 9�b�,
respectively. The distance d�Ci ,Bj� follows the very same
pattern. Finally, inspecting all different cases one finds

d�Ai,Cj� = �2 i, j � bn,

3 i � bn � j, or j � bn � i ,

4 i, j � bn.
� �16�

Eigenvalues. We have found no obvious way to compute
the eigenvalues, despite the similarities between R18

�3� nets
and two-letter threshold nets. However, plots of the eigenval-
ues against the alphabetical ordering of the nets once again
reveal intriguing fractal patterns, and one can hope that these
might be exploited at the very least to produce good bounds
and approximations. In Fig. 10 we plot the ratio r=�N /�2 for
R18

�3� nets with N=7 against their alphabetical ordering. The x
axis includes sequences of nets that are not connected: In this
case �2=0 and synchronization is not possible. These cases
show up as gaps in the plot; for example, the large gap in the
center corresponds to disconnected sequences that start with
the letter B �see Sec. III B�.

D. Multithreshold nets

Some of the three-letter sequence nets can be mapped to
generalized forms of threshold nets. For example, the follow-

FIG. 9. The distance d�Ai ,Bj� in R18
�3� nets. �a� If i� j and the

first A is below Bj, the distance is 2. �b� If the first A is above Bj,
then the first C must be below �B cannot start the sequence�; in that
case, if Ai is below the last B, the distance is 3, and otherwise the
distance is 4. Only the relevant parts of the complete net are shown.
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FIG. 10. �Color online� The ratio �N /�2 for R18
�3� nets consisting

of N=7 nodes, against their alphabetical ordering. Note the gap
near the center, which corresponds to sequences of disconnected
graphs. Note also the mirror symmetry—this is due to the mirror
symmetry of the rule R18

�3� itself.
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ing scheme yields a two-threshold net, equivalent to three-
letter sequence nets generated by the rule R20

�3�. Let the nodes
be assigned weights 0�xi�3� /2, from a random distribu-
tion and connect any two nodes i and j that satisfy xi+xj
��	�1 or xi+xj �2�	�2. Identifying nodes with weight
0�xi�� /2 with A, nodes with � /2�xi�� with B, and
nodes with ��xi�3� /2 with C, we see that all A’s connect
to one another and all C’s connect to one another but the B’s
do not, and A’s and C’s do not connect; nodes of type A and
B may or may not connect, and likewise for nodes of type C
and B. To reflect the actual connections, the nodes of type A
and B may be arranged in a sequence according to the algo-
rithm in �9�, for the threshold rule R5

�2�. Also the nodes of
types C and B may be arranged in a sequence, to reflect the
actual connections, with the very same algorithm. Because
there are no connections between A and C, the two results
may be trivially merged. Note, however, that once the A-B
sequence is established, the order of the B’s is set, so the
direction of connections between C and B �C→A or A→C�
is not arbitrary. In our example, the mapping is possible to
R20

�3� but not to R18
�3�.

IV. SUMMARY AND DISCUSSION

We have introduced a class of nets, sequence nets, ob-
tained from a sequence of letters and fixed rules of connec-
tivity. Two-letter sequence nets contain threshold nets, and in
addition two newly discovered classes. The R13

�2� class can be
mapped to a “difference-threshold” net, where nodes i and j
are connected if their weights difference satisfies �xi−xj���.
This type of net may be a particularly good model for social
nets, where the weights might measure political leaning, eco-

nomical status, number of offspring, etc., and agents tend to
associate when they are closer in these measures. We have
shown that the structural properties of the new classes of
two-letter sequence nets can be analyzed with ease, and we
have introduced an ordering in ensembles of sequence nets
that is useful in visualizing and studying their various at-
tributes.

We have fully classified three-letter sequence nets and
looked at a few examples, showing that they too can be
analyzed simply. The diameter of sequence nets grows lin-
early with the number of letters in the alphabet and for a
three-letter alphabet it is already 3 or 4, comparable to many
everyday-life complex nets. Realistic diameters might be
achieved with a modest expansion of the alphabet.

There remain numerous open questions: Applying sym-
metry arguments we have managed to reduce the class of
three-letter nets to just 30 types, but we have not ruled out
the possibility that some overlooked symmetry might reduce
the list further. The question of which sequences lead to con-
nected nets can be studied by inspection of small alphabets,
but we have no comprehensive approach to solve the prob-
lem in general. We have shown how to map sequence nets to
generalized types of threshold nets, in some cases. Is such a
mapping always possible? Is there a systematic way to find
such mappings for any sequence rule? What kinds of nets
would result if the connectivity rules applied only to the q
preceding letters, instead of to all preceding letters, etc.? We
hope to tackle some of these questions in future work.
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